Active Visual-Based Detection and Tracking of Moving Objects from Clustering and Classification Methods
نویسندگان
چکیده
This paper describes a method proposed for the detection, the tracking and the identification of mobile objects, detected from a mobile camera, typically a camera embedded on a robot. A global architecture is presented, using only vision, in order to solve simultaneously several problems: the camera (or vehicle) Localization, the environment Mapping and the Detection and Tracking of Moving Objects. The goal is to build a convenient description of a dynamic scene from vision: what is static? What is dynamic? where is the robot? how do other mobile objects move? It is proposed to combine two approaches; first a Clustering method allows to detect static points, to be used by the SLAM algorithm and dynamic ones, to segment and estimate the status of mobile objects. Second a classification approach allows to identify objects of known classes in image regions. These two approaches are combined in an active method based in a Motion Grid in order to select actively where to look for mobile objects. The overall approach is evaluated with real data acquired indoor or outdoor.
منابع مشابه
Moving Objects Tracking Using Statistical Models
Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...
متن کاملA Novel Method for Tracking Moving Objects using Block-Based Similarity
Extracting and tracking active objects are two major issues in surveillance and monitoring applications such as nuclear reactors, mine security, and traffic controllers. In this paper, a block-based similarity algorithm is proposed in order to detect and track objects in the successive frames. We define similarity and cost functions based on the features of the blocks, leading to less computati...
متن کاملMoving Objects Tracking Using Statistical Models
Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...
متن کاملStatistical Background Modeling Based on Velocity and Orientation of Moving Objects
Background modeling is an important step in moving object detection and tracking. In this paper, we propose a new statistical approach in which, a sequence of frames are selected according to velocity and direction of some moving objects and then an initial background is modeled, based on the detection of gray pixel's value changes. To have used this sequence of frames, no estimator or distribu...
متن کاملOnline multiple people tracking-by-detection in crowded scenes
Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012